Часть 1. Недопустимые значения переменных
Тема урока: Недопустимые значения переменных
Цели урока
На этом уроке мы разберёмся, что такое недопустимые значения переменных в алгебраических выражениях. Это как узнать, какие числа нельзя использовать в игре, чтобы не нарушить правила! Мы будем:
Понимать, почему некоторые значения переменных недопустимы.
Находить такие значения в простых выражениях.
Учиться проверять выражения, чтобы избежать ошибок.
Основная часть урока
1. Что такое недопустимые значения переменных? 🧮
В алгебраических выражениях иногда встречаются ситуации, когда определённые значения переменных нельзя использовать. Это происходит, когда подстановка числа приводит к невозможным математическим действиям, например, делению на ноль. Деление на ноль — это как пытаться разделить пиццу на ноль кусочков, это просто невозможно! 😄
2. Почему деление на ноль недопустимо? 🚫
Если в выражении есть деление, например, 5 ÷ x, то x не может быть равен 0, потому что делить на ноль нельзя. Это основная причина, по которой возникают недопустимые значения. Например:
В выражении 10 ÷ y, если y = 0, то деление невозможно.
Если y = 3, то 10 ÷ 3 — это нормально, результат 3.33 (примерно).
Поэтому мы всегда проверяем, не станет ли знаменатель (число, на которое делим) равным нулю. Это как проверка, чтобы не попасть в математическую ловушку! 😎
3. Как находить недопустимые значения? 🔍
Чтобы найти недопустимые значения переменной, смотрим на выражение и ищем деление. Если переменная стоит в знаменателе (внизу дроби), то она не должна делать знаменатель равным нулю.
Пример: В выражении 7 ÷ (x − 2) знаменатель x − 2 не должен быть равен 0. Решаем уравнение:
x − 2 = 0
x = 2
Значит, x = 2 — недопустимое значение, потому что 7 ÷ (2 − 2) = 7 ÷ 0, а это невозможно.
4. Практическое применение 📝
Понимание недопустимых значений помогает избегать ошибок в задачах. Например:
Если задача: «Найди значение выражения 12 ÷ z, где z — число», то z не может быть 0.
Если z = 4, то 12 ÷ 4 = 3 — это работает, но если z = 0, то выражение не имеет смысла.
Это как знать, какие шаги безопасны в математической игре! 🌟
Практика 🛠️
Попробуйте сами! Возьмите выражение, например, 8 ÷ x, и определите, какое значение x недопустимо. Или возьмите 6 ÷ (y − 3) и найдите, при каком y деление невозможно. Это как разгадывать математический квест! 🎲
Ответ: x = 0, потому что деление на ноль невозможно. ✅
Ответ: Решаем m − 5 = 0, значит m = 5. Недопустимое значение: m = 5. ✅
Ответ: Выражение: 9 ÷ (k + 1). Решаем k + 1 = 0, значит k = −1. Недопустимое значение: k = −1. ✅
Оцените урок:
До 2030 года: исчезнут 67 профессий и появятся новых 186 🤖
Посмотреть в Telegram