Главная > Сложение и вычитание смешанных чисел (Вольфсон Г.И.) | Математика | 5 класс
Сложение и вычитание смешанных чисел (Вольфсон Г.И.)
На данном уроке вы узнаете правила сложения и вычитания смешанных чисел, научитесь решать различные задачи по теме «Сложение и вычитание смешанных чисел». Сложение и вычитание смешанных чисел основано на свойстве этих чисел. При сложении можно использовать переместительное и сочетательное свойство, а при вычитании чисел можно использовать свойства вычитания числа из суммы и вычитания суммы из числа.
Введение
Для начала давайте вспомним, что такое смешанные числа. Смешанное число – число, записанное в таком виде, что у него есть целая часть и дробная часть. Например, . Здесь 3 – целая часть, – дробная.
Задача 1
Предположим, нам дали такую задачу. Вася пробежал первый из двух кругов дистанции за 1 минуту 40 секунд, а второй круг – за 1 минуту 20 секунд. За какое время Вася пробежал всю дистанцию и насколько быстрее он пробежал второй круг, чем первый?
Решение
Несложно видеть, что мы можем сложить минуты с минутами, секунды – с секундами. Получится 2 мин + 60 секунд, т. е. 3 мин. Но, с другой стороны, 40 секунд – это минуты, а 20 секунд – . И тогда, по аналогии, чтобы сложить эти смешанные числа, мы можем не переводить их в неправильные дроби, а сразу сложить целые минуты друг с другом, и отдельно – дробные. Это дает 2 минуты и , то есть еще одну целую минуту. Итого 3 минуты.
Можно было все это проделать и так. Заметим, что смешанное число есть сумма своих целой и дробной частей. А дальше воспользуемся переместительным свойством:
А что с вычитанием? То же самое. Из чисто практических соображений первый круг по минутам одинаков со вторым, а по секундам – на 20 дольше (или на треть минуты). Можно и так:
Думаю, вы уже поняли алгоритм? Из целого вычитаем (к целому прибавляем) целое, из дробного – дробное. Рассмотрим еще несколько примеров.
Примеры на сложение
Закрепим эти выкладки правилом. Чтобы сложить два смешанных числа, необходимо:
- сложить их целые части;
- сложить их дробные части;
- если нужно, перевести сумму дробных частей в смешанное число;
- сложить полученные числа.
Перейдем к вычитанию. Рассмотрим несколько примеров, после чего сформулируем общий алгоритм.
Найти ошибки в примерах на сложение
Рассмотрим внимательно первый пример: смешанное число заменили дробью , а число – , но данные дроби не равны. Если мы решим переводить дроби в неправильные, то получим следующее:
Теперь перейдем ко второму примеру, в нем действия выполняются согласно рассмотренному нами алгоритму. Как видим, все действия выполнены правильно, однако принято записывать смешанные числа так, чтобы их дробная часть являлась правильной дробью. Поэтому представим дробь в виде смешанного числа, а потом уже выполним сложение.
Примеры на вычитание
Если пойти по плану, то надо из вычесть . Этого мы сделать не можем. Тогда поступим так, как мы делаем при вычитании натуральных чисел: займем у старшего разряда. Только роль старшего разряда здесь будет играть целая часть. Ведь единица – это , так что можно вместо записать . А дальше – по плану:
А что делать, если пришлось вычитать из натурального числа смешанное? То же самое:
.
Закрепим эти выкладки правилом. Чтобы вычесть одно смешанное число из другого, вы должны:
- сравнить дробные части уменьшаемого и вычитаемого;
- если дробная часть уменьшаемого больше, то вычесть из целой части целую часть, из дробной части дробную часть, а результаты сложить;
- если же больше дробная часть вычитаемого, то одну единицу от целой части уменьшаемого мы переводим в дробь, чтобы дробь стала неправильной, а затем вычитаем из целой части целую, а из дробной – дробную, и результаты складываем.
Найти ошибки в примерах на вычитание
Рассмотрим первый пример. Согласно алгоритму, мы должны сначала 12 представить в виде смешанного числа, а затем уже выполнять вычитание:
Рассмотрим второй пример. Здесь ошибка при вычитании дробных частей: нам необходимо из дробной части уменьшаемого вычесть дробную часть вычитаемого, а не наоборот. Чтобы это выполнить, нам придется занять 1 единицу и представить ее в виде дроби.
Заключение
На этом уроке мы познакомились со смешанными числами, научились складывать их и вычитать, сформулировали алгоритмы для сложения и вычитания. Узнали, что для сложения и вычитания смешанных чисел вовсе не обязательно переводить их в неправильные дроби, а достаточно просто сложить либо вычесть целые части и сложить либо вычесть дробные части, после чего записать окончательный ответ.
В каждом из случаев у нас была одна тонкость. Для сложения мы понимали, что иногда получается сумма дробных частей в виде неправильной дроби, поэтому при необходимости полученную неправильную дробь нужно приводить к правильной, то есть выделять целую часть. А при вычитании появлялась такая тонкость, что не всегда из дробной части уменьшаемого можно вычесть дробную часть вычитаемого, поэтому нам необходимо было «занимать» единицу у целой части и переводить ее в дробную, чтобы получить неправильную дробь, из которой уже можно было вычесть дробную часть.
Список литературы
- Математика. 5 класс. Зубарева И. И., Мордкович А. Г. 14-е изд., испр. и доп. – М.: 2013.
- Виленкин Н. Я. и др. Математика. 5 кл. – М: Мнемозина, 2013.
- Ерина Т. М. Математика 5 кл. Раб. тетрадь к уч. Виленкина 2013. – М: Мнемозина, 2013.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал фестиваля педагогических идей «Открытый урок» (Источник)
- Интернет-портал «Школьный помощник» (Источник)
- Интернет-портал «schools.keldysh.ru» (Источник)
Домашнее задание
- Если вы потратите своей зарплаты в первую неделю месяца и 20 % от нее в каждую из последующих 3-х недель, то какая часть зарплаты останется неистраченной к концу месяца?
- Старый компьютер вычисляет задачу за часа, новый компьютер выполняет ту же работу на часа быстрее. За сколько минут новый компьютер вычисляет задачу?
- От провода длиной 14 метров отрезали кусок, длина которого – метра, а затем еще один кусок длиной метра. Какая длина проволоки осталась?
Оцените урок: